Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

نویسندگان

  • Upendra M Sainju
  • Bharat P Singh
  • Wayne F Whitehead
  • Shirley Wang
چکیده

Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management

Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of nearequilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation ...

متن کامل

Soil Organic Carbon Stocks and Nitrogen Content Comparison in Different Slope Positions in Native Grasslands and Adjacent Cultivated Soils (Case Study: Kermanshah Mountain Rangelands, Iran)

Global warming has been largely driven by increasing atmospheric GHG (Green House Gasses), particularly carbon dioxide caused by fossil fuels burning. The current trend can not be stopped except by reducing fossil fuel consumption or storing organic carbon in soil or earthchr('39')s biological systems such as forests, rangelands and agricultural systems. This study was conducted to determine th...

متن کامل

Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux.

Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and...

متن کامل

Nitrogen and Phosphorous Loss as Affected by Plough Direction in Rainfed Wheat Land of a Semi- Arid Region

Sloping farmlands are the major sources of soil, water and nutrient losses in arid and semi-arid regions. Information about the impacts of different tillage practices on soil erosion, nutrient loss and crop nutrient uptake on the sloping farmland of semi- arid soil is, however, limited. This study was carried out to investigate the effects of tillage direction on soil, water, nitrogen and phosp...

متن کامل

Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content.

Management practices are needed to reduce dryland soil CO(2) emissions and to increase C sequestration. We evaluated the effects of tillage and cropping sequence combinations and N fertilization on dryland crop biomass (stems + leaves) and soil surface CO(2) flux and C content (0- to 120-cm depth) in a Williams loam from May to October, 2006 to 2008, in eastern Montana. Treatments were no-tille...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2006